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A discussion of the solution by means of fast fourier transforms of the constant coefficient 
elliptic problem with isolated boundary conditions is presented. Concepts of filtering and 
sampling are used to show that the transform algorithm devised by Hackney [l] gives exact 
potential values in the computational box (cf. remarks in [2]). The algorithm and per- 
formance of a three dimensional implementation of the transform algorithm is given. It is 
shown that interlaced meshes or mesh and submeshes may be employed to gain further 
computational economy. 

1. INTRODUCTION 

The transform method for solving Poisson’s equation for isolated systems was first 
developed by Hackney [l]. The original implementation of the transform method for 
an isolated system, POT3, (lot cit.) is, as Hackney pointed out, wasteful in both 
computer time and storage. Our aim in this paper is to dispel certain erroneous ideas 
about the nature of the transform potential solver, and to show how economies in 
storage and computer time can be achieved without any substantial alteration of 
Hackney’s algorithm. In addition, we shall indicate how further savings can be made 
by using new transform based algorithms. 

We devote section 2 to a detailed discussion of the principles of the isolated 
potential solver method. This, we feel, is necessary because of the mistaken impression 
[2] that the transform method keeps unrealistic boundary conditions, but reduces 
their influence in the region of interest by moving the boundaries further away. 
Section 3 is devoted to a description of a three dimensional potential solver, POTSA 
developed by one of us (DRKB). There, we shall show that the estimates of necessary 
storage and computer time given by Maruhn et al. [2] are unduly pessimistic. In 
sections 4 and 5 we outline variations of the transform method designed to give 
further computational economies. 

2. THE FFT METHOD FOR ISOLATED SYSTEMS 

The elliptic problem, to solve 

v*m = P(X) 
24 
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subject to boundary conditions 

(2) 

may be transformed to the integral equation 

4(x) = j G(x - x’) p(x’) dx’ 

where 

and 

V2G = 6(x) 

G-+0 as /x/+cc 

(3) 

(4) 

The Green’s function, G, gives the response to a unit source term. In three dimensions, 
(4) gives 

G(x - x’) = 
1 

47r 1 x - x’ / (5) 

Given the Green’s function, the convolution integral expression for the potential 
can be solved using fourier transforms:- 

(6) 

where the symbol 3 is used to denote “transforms to”. The discrete analogues to 
(l)-(6) are solved in essentially the same way; integrals become sums, fourier trans- 
forms become discrete fourier transforms. The only major difference between the 
discrete and continuous case is the x-space truncation of G to suppress aliases-in this 
instance aliases would manifest themselves as periodic boundary conditions. 

The discrete problem may be derived directly from the continuous case by replacing 
p(x) by samples of values defined on a regular array of mesh points. For simplicity, 
consider the one dimensional case. The sampled set of values of p may be described 
using the generalised function 

where 



26 EASTWOOD AND BROWNRIGG 

and 6(x) is the Dirac delta function. Substituting (7) into (3) gives 

&(x) = H f G(x - xp,) f(q) (9) 
j,‘=--” 

where x,, = p/H, p’ is an integer and H is the spacing of the sampling points. 
Sampling values of #Q at the same points as those where values of p are defined gives 
the set of algebraic equations 

$dxzJ = H f W, - XL) P(Q) 
P’z-02 

(10) 

where +1(x,) differs from r#~(x~) only if p(x) is undersampled, i.e. if, as is usual in 
mesh calculations, the source term is specified as a set of values defined at mesh 
points then c$~(x,) is identical to 4(x,) for all mesh points, p. The undersampling 
proviso is simply a statement that the mesh must be sufficiently fine to represent the 
source function so that the difference between the values of the true and mesh solu- 
tions is negligible. 

In practical computations, (p(x,) = p,} are non-zero only for a finite range of p, 
say 0 to N, - 1. The length L = N,H is the length of the computational box. The 
problem is to find values of &(x,) = $2, for p E [0, N, - I], given values of G for 
p E [-(N, - l), (N, - l)] and p for p E [0, N, - I] i.e. to solve 

4,(x,> = H 1 G(x, - ,v,,> p(w) (11) 
,I'==0 

forp = 0, 1, 2 *a* N, - 1. 
Hackney’s algorithm [l] replaces (11) by the cyclic convolution expression:- 

2N,-1 

d&J = H 1 G(x, - xi) pz(w> (12) 
p'=0 

where p = 0, 1, 2 *** 2N, - 1 

pz(x,) = 
I 

O<p<N,-1 
N,<p42N,- 1 (13) 

G,(x,) = G&J -N,Qp<N,-1 (14) 

f&J = f2(XD + 2L) (15) 

G&J = &4x, + 2L) (16) 

which gives the desired result that 

for 0 < p < N, - 1 (17) 
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Equation (12) can be readily solved using FFT as described by Hackney [l]. Note that 
equation (12) gives the correct potential at mesh points within the computational 
box, i.e. the effects of periodicity are completely suppressed for mesh points 0 to 
N, - 1. The same result holds in two and three dimensions. 

An instructive interpretation of the algorithm is given in terms of sampling. We 
define the transform pair (fourier series):- 

t(k) = H f C(x,) e-ikr,~ (19) 
p=-n 

the sampling function m (c.f. 19, IO]) 

where 

and 

a = N,H 

and the x-space truncation function 

where b = N,H; NI integer 

(20) 

(21) 

(22) 

(23) 

(24) 

The subscript s in equations (20)-(23) is used to remind readers that we use a series 
transform for discrete (grid point) values in x-space. 

First, let us look at the case where G is not truncated. The convolution (10) may be 
transformed using (18) and (19) to give 
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Sampling k space at interval (r/L) (a = 2L) leads to a periodicity, period 2L in 
x-space:- 

i.e. 

Multiplying the x-space sum in (26) by the truncation function np (x,/2L) (and per- 
forming the corresponding convolution in k-space) reduces (26) to a form which may 
be solved using the FFT algorithm. However, since $r is generally non-zero for all p, 
the effect is to leave the periodic boundary conditions in the problem as stated by 
Maruhn et al. [2]. 

When G is truncated, we obtain the algorithm devised by Hackney. The convolution 
sum (10) is replaced by 

+Xx,> = H c G’(x,> - XL> PAX,,) (27) 
II’ 

where 

G’(x,) = fl &) W-J (28) 

The convolution (27) gives the potential 4;: which is non-zero for only a finite range 
of x (-f. to 2L) or equivalently, a finite range of p E [-IV, , 2N, - l] and is equal 
to the correct potential & for x E [0, L], or p E [0, N, - 11. Sampling in k-space at 
interval n-/L, followed by filtering in x-space reduces the transform pair to a form 
which may be solved using the FFT algorithm. The effect in x-space is to periodically 
superpose images of 93’ at interval 2L. 

Thus if 

according to transforms (18) and (19), then k-space sampling gives 

Taking values in the interval x E [0, 2L], p E [0, 2N, - l] gives 

m,) = ,i, 4Xx,, - 2L) = d&(x,> = MhJ P E P, N, 

and 

m,> = mu> + &Lx,, - 2Ll p E IN,, 2N, - 11 

(29) 

(30) 
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i.e. Hocney’s algorithm gives correct potentials in the interval [0, L]. The truncation of 
G causes the effect of periodic repeats to be limited to the “padding” region [L, 2L]. A 
graphic interpretation of the effect of truncating G is shown in Fig. 1. 

bl 
GI cl GI 

FIG. 1. A graphical interpretation of the effect of truncating the influence function, G. Solving 
for the potential may be regarding as convolving the set of values {p) (Fig. la) with the influence 
function (Figs. lb or lc) to obtain potential values 4, and then convolving values 4 with the sampling 
function m(x/2L) to obtain the solution +‘. If the influence function is truncated, then the potential 
& (Fig. le) is non-zero only for --L < x < 2L, otherwise the potential, &, is non-zero for all X. 
Superposing periodic repeats of s$ gives values 4; identical to CZ for 0 < x < L (Fig. Ig), whereas 
superposing values of & gives 4; # & for all X. Thus, the effect of truncating G is to give correct 
potential values (41 = q& = G * p) within the computational box (0 c x -C L). 

3. THE 3-D ISOLATED POTENTIAL SOLVER, POT5A 

The simple minded approach to the solution of Poisson’s equation in a box of 
N x N x N points using the transform method would require (~LV)~ mesh points 
and approximately 5(2N)3 log,(2N)3 real arithmetic operations. Merely by ordering 
the fourier analysis and synthesis correctly, storage requirements are reduced by 
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approximately a factor of four, and the operations count is nearly halved. These 
savings have been made in POTSA. 

The calculation procedure in POTSA is outlined below. For simplicity, we consider 
the case of a cubical computational box of N x N x N points. 

Step 1. Double the length of mesh in x-direction, setting all values on the extra 
mesh to zero. Perform N2 length 2N transforms on all lines of data parallel to the 
x-axis, overwriting values {p( p, q, r)} by harmonics {p”(k, q, r)} 

Step 2. Do for all 2N data value planes perpendicular to the x-axis: 

(a) Perform N length 2N transforms on lines of data parallel to y-axis. 
(b) Perform 2N length 2N transforms on lines of data parallel to the z-axis. 
(c) Multiply charge harmonics by influence function harmonics to obtain 

potential harmonics in current plane 

(d) Perform 2N length 2N inverse transforms on lines of potential harmonics 
parallel to z-axis. 

(e) Perform N length 2N inverse transforms on lines of data parallel to y-axis. 

Step 2 converts each plane of values {p”(k, q, r); (q, r) E [0, N - I]} to {&k, q, r); 
(q, r) E [0, N - I]]. All other values in each plane are discarded. 

Step 3. Perform N2 length 2N inverse transforms on all lines of data parallel to the 
x-axis to obtain potential values in the computational box. 

Storage required is 2N3 plus that needed to store influence function harmonics 
(G}. If all three sides of the computational box are unequal (NX # NY # NZ) then 

FIG. 2. Storage diagram for POTSA. (n = 2iV). 
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there are NX x NY x NZ distinct values of e. Two sides equal (say NX = NY) 
introduce further symmetries reducing the number to approximately +NX x NY x 
NZ. The forty-eight symmetry of the cubic lattice gives a further factor of + when 
NX=NY=NZ. 

Fig. 2 shows the total storage region required for the calculation. The left hand 
triangular based region is that required for the influence function transform in the 
case where the number of points in x and y directions is the same as in POTSA, 
illustrating the reflection of values in the x y diagonal. The left hand half of the double 
cube is the region where charges lie, the right hand half and the two dimensional 
slab of storage in the y z plane constituting the extra storage required. The 2N line of 
sotre in the z direction corresponds to the input/output vector for the fourier analysis 
routine. 

The arithmetic operation count for a cubic mesh of side N is as follows 

Step Number of Operations 

I N2(2.5 x 2N log,(2N)) 

2a 2N x N(2.5 x (2N) log,(2N)) 

2b 2N x 2N(2.5 x (2N) log,(2N)) 

2c 2N x (2N)2 

2d 2N x 2N(2.5 x (2N) log,(2N)) 

2e 2N x N(2.5 x (2N) log,(2N)) 

3 N2(2.5 x 2N log,(2N)) 

Total: &[5 x (2N)3 log,(2N)3] + (2N)3 N &5(2N)3 log2(2N)3] 

c.f. simple minded approach, where the operations count is approximately 5(2N)3 
log2(2N)3. For comparison, timings of POTSA and a triply periodic region potential 
solver, POT6A, are given in Table 1 for a variety of charge mesh sizes. The charge 
mesh dimension for POTSA is an integer power of two plus one, while that for POT6A 
is an integer power of two. 
The calculations were performed on an IBM 370/195 using Hackney’s FOUR67 

FFT [3]. 
The factor of 7/12 improvement over the simple approach is illustrated by com- 

parison of the timings for instance, of the 173 POTSA and the 323 POT6A, each of 
which use the same overall mesh. However, despite the fact that a factor of nearly 
two speedup is obtained by suitably ordering the operations, the method is still about 
four times slower than the straightforward periodic case. In the next section, a tech- 
nique which allows a further speedup is discussed. 

.$1/32/I-3 
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TABLE 1 

POTSA POT6A 

Charge Mesh Time (sets) Charge Mesh Time (sets) 

98 0.189 83 0.051 

172 x 9 0.667 162 x 8 0.175 

173 1.177 163 0.322 

331 x 17 4.245 322 x 16 1.121 

333 7.825 325 2.055 

4. INTERLACED SAMPLING IN TRANSFORM SPACE 

If, instead of sampling harmonics C&(/C) at interval T/L, we sample at interval 277/L 
we obtain 

m(g) m 1 f #Jxxgl - nL) 
a=--m 

(33) 

Similarly, by sampling again at interval 277/L, but this time on a mesh displaced by 
r/L, we find 

(34) 

The average of the two samples gives the same result as obtained earlier (equation 
(26)). A graphical interpretation of (33) and (34) is given in Fig. 3. 

In one dimension, interlaced sampling is no more than an explicit statement of the 
final butterfly operation of the FFT algorithm. The equivalent in two and three 
dimensions would involve four and eight interlaced meshes, respectively. However, 
significant gains in two and three dimensions can be made by taking only two inter- 
laced samples, where the second sample is on a mesh of points body centred with 
respect to the lattice of points of the first:- 

The two samples in two dimensions are given by 

(35) 
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and 

3 - m 6% h> L 2 w2 - H L 
2 

== 
2n 2n 

& 2 11 k 2 ) 

3 c 2 (-1)“’ (-I)“’ &(x, - n,L, y, - n,L) (36) 

Averaging the result of the two samples gives 

FIG. 3. A graphical interpretation of the interlaced sampling algorithm. The convolution of the 
source function, p, (non-zero in the range 0 to L) with the Greens function, G (non-zero in the range 
--L to L) give the potential 4 which is correct in the range 0 to L, and nonzero only in the range 
--L to 2L (figure 3a). Sampling even harmonics of potential (figure 3b) gives a potential S, which is 
a superposition of periodic images of 4 spaced at interval L. Sampling odd harmonics has a similar 
effect, except that alternate images have their signs reversed. Averaging S, and S, recovers correct 
potential values for x E [O, L] (figure 3d). 

The result (37) shows that if {p(x,)) are non-zero only for points within the square 
connecting the mid-points of the side of the computational box, and if values {G) are 
non-zero over a square lattice of points with sides twice that of the square in which 
values {p(x,)> are non-zero, then averaging two interlaced samples will give the 
correct potential, +r(x, , v,) within the square where {p> are non-zero. 



34 EASTWOOD AND BROWNRIGG 

The basic form of the algorithm for finding the average of two interlaced samples, 
and thence the potential is given by equations (38)-(42). In these equations, the mesh 
spacing, is taken to be unity. Integer pairs ( p, 9) E [O, N - l] and (k, Z) E [0, N - I] 
label mesh points within the computational box and harmonics, respectively. 

Step 1. Find harmonics {p”}:- 

@k 20 = Nil P(P, 4) exp [ - % (kp + .$)I 
xJ,q=o 

p”W + 1, 2[ +- 1) = pNgl p(p, q) exp [ - $ (p + q)] exp [ - $$ (kp 

Step 2. Find potential harmonics 

&2k, 21) = G(2k, 2&(2k, 21) 

&2k + 1, 2I+ 1) = @2k + 1, 2Z+ 1),5(2k + 1, 21+ 1) 

Step 3. Find potential by averaging samples 

&P5 S> = & kzo !j [ &2k 22) + exp [$ (p + q)] &2k + 1, 21. t 

x exp [ + (kp + k)] 

(38) 

l)l 
(42) 

In the form given by (38)-(42), the interlaced algorithm requires more storage and 
comparable time to that required by the straightforward algorithm. However, by 
manipulating the expressions for the odd harmonics, we obtain a simpler set of 
equations to solve. The procedure for even harmonics remains the same as above, and 
for odd harmonics takes the form:- 

Ir/)] 
(39) 

(Jo) 

(41) 

(i) find 

A@, 0 = pFIo P(P, d ~0s (-$- (P + 4)) w [ - T (b + V] (43) 

(ii) calculate 

where 

f?(k, I) = e+(k, f@(k, Z) + &(k, Q&k, I) 

and 

&(k, Z) = &(2k + 1, 21+ 1) -& G(2k - 1, 21- 1) 

l?(k + 1, I + 1) + &k, I) = d(k + 1, I + 1) - a(k, I) 

(44 
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(iii) find 

where 

(iv) find 

The potential is given by 

&” ‘) = 2N2 ~ l=u 
-L 7 &2k, 21) exp [+- (lip + /q)] 

1 
2 cosK4Nh __ C(P, 4); + 411 

p + q # 4, ‘2” 

+ 

1 

& a4; P-+q+ 

- & D(p); p f q =.- y 
\ 
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(45) 

(46) 

(47) 

(48) 

To solve for the potential requires four periodic fourier transforms on real (or 
hermitian) data (equations (38), (43), (47), (48)) plus the subsidiary calculations. 
Correct potential values are found at N2/2 points for an N x N mesh. 

If we measure the calculation time of a transform on N x N real data as one unit, 
then the interlaced method requires -4 units to get the correct solution in a region of 
N2/2 points. The transform method using a doubled region without ordering would 
require eight units for the same calculation. Careful ordering of analysis and synthesis 
reduces the figure to six units, approximately 50 “/, slower than the time estimated 
for the interlaced scheme. 

5. LOCAL MESH REFINEMENT 

One advantage of the Greens function and fourier transform approach to the solu- 
tion of Poissons equation is that it allows finer resolution to be added in selected 
areas of the computational box. The concept of spectral filtering is used in deriving 
mesh-submesh algorithms. 

The potential calculation is split into two parts in mesh submesh algorithms: a 
smoothly varying part, @,! , and a short range rapidly varying part, @,< . 0,,, is 
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calculated using transform methods on the coarse mesh, and OS is calculated either 
directly or by transform methods on the finer submesh. 

Let @ r) 4 be the potential given by the exact calculation on a fine mesh containing 
both the mesh and the submesh points. In one dimension 

&k) = i;‘(k);(k) (49) 

= &L@) + @dW (50) 

= G!Pp” + G(l - 32); (51) 

The splitting factor 3 may be interpreted as the transform of a finite width density 
profile associated with each mesh point on the composite fine mesh. ,‘I? is chosen so 
that 

(i) the short range potential term @, is given by a spatially localised convolu- 
tion 

@s&J = G2 * P (52) 

where 

e2 = G(l -32) (53) 

and ;i; is a shorthand notation for convolution. 

(ii) the smoothly varying part of the potential, aj, ZI &‘, , has a sufficiently 
limited spectral content to be adequately approximated by the transform method 
applied to the coarse mesh sample. The influence function, e, , used in the coarse 
mesh calculation is chosen to be the least squares fit to Gs2. The approximation 
+m to @‘, is found as follows:- 

(a) Filter {p(x,)} and sample every Nib point 

thus giving modified source charges {.f(x,)} on only the coarse mesh points 
(b) solve for ‘potential’ on coarse mesh 

G%GJ = IIIs (+) (G * f> (55) 

(c) interpolate to find smoothly varying part, am, of the potential on both 
coarse mesh and finer submesh points 

brd%> = w2 * 8 (56) 

Steps (a) and (c) are analogous to the operations of charge assignment and potential 
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interpolation in particle-mesh codes. For reasons of economy, assignment and inter- 
polation functions, w1 and w2 , are chosen to be spatially localised. 

where 

Operations (54)-(56) give harmonics &(k):- 

NI-1 

The optimal choice of &- 

x2;’ eir,zi$s2 
ixk) = (Cf&” ey)(~fy zi22) 

n2rr 
NlH ) (57) 

(58) 

(59) 

gives the least squares deviation, Q, of the potential of a unit source from its correct 
value:- 

where L is twice the computational box length, L = N,N,H, and 

4 N2/2) = 1; 
if 1 = 0 or N2/2 
otherwise 

(60) 

(61) 

The one dimensional description of the mesh-submesh method immediately 
generalises to two and three dimensions. The procedure for choosing 9, w1 and w2 
follows in the same manner as that used for the PPPM algorithm [7]. A more extensive 
analysis and practical details of the implementation of mesh-submesh algorithms will 
be discussed elsewhere [l 11. 

5. FINAL REMARKS 

In this paper, we have tried to clarify two important points concerning the transform 
method. The first is that the transform method gives the exact potential rather than 
simply moving the periodic images further away. The second point is that storage 
and calculation time is not 2d (d = dimension) greater than the periodic case; for 
example, in three dimensions, storage is only twice that required by the periodic case 
and calculation time is approximately four and a half times greater than for the 
periodic case. Further speed-up on the timings quoted can be achieved by using FFT 
routines written especially for short strings of real data values. 

A particularly attractive feature of the transform method is the flexibility it gives in 
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the choice of the influence function. In large particle-mesh calculations (e.g. [4]); 
adjustments to C? can significantly improve the quality of the representation of this 
dynamical system without affecting the cost of the computation (c.f. [S, 6, 71). The 
flexibility is retained in the interlaced mesh variation discussed in section 4. Although 
the interlaced harmonics algorithm shows marginal improvement in operations 
count for the two dimensional case, the increased complexity of the overhead calcula- 
tions in three dimensions are unlikely to show real gains over POTSA. For this 
reason we have not pursued it further. On the other hand, the mesh-submesh approach 
offers a large increase in localised spatial resolution at relatively small costs. If a 
seven or twenty-seven discretisation of the Laplacian operator is used on a uniform 
3-D mesh, then the equivalent charge layer algorithm devised by James [8] is to be 
preferred to that used in POTSA because of its smaller storage requirements and 
calculation time. (It requires approximately half the storage and one third of the 
calculation time for POTSA). 
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